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Abstract

This paper investigates the region in which all the minimal solutions of
a linear diophantine equation ly. We present best possible inequalities
which must be satisfied by these solutions and thereby improve earlier
results.
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1 Introduction
For two nonnegative integral vectors a € N*, b € N n,m > 1, let
L(a,b) ={(z,y) e N* x N" : oTzx =bTy} (1.1)

be the set of all nonnegative solutions of the linear Diophantine equation a7z =
bTy. Here we are interested in the minimal solutions of this linear Diophantine
equation, where (z,y) € L(a,b) is called minimal if it can not be written as the
sum of two other elements of L£(a,b)\{0}. The set of all minimal solutions is
denoted by H(a,b). By definition we have

L(a,b) = {Zle gh' :qg,peN, b e H(a,b)}

and H(a,b) is a minimal subset of £(a,b) having this generating property.
In other words, H(a,b) is the Hilbert basis of the pointed rational cone

C(a,b) = {(z,y) € RY; x RY; : aTx = bTy}. (1.2)

A Hilbert basis of an arbitrary pointed rational polyhedral cone C' C R"
is defined as the unique minimal generating system (w.r.t. nonnegative integral
combinations) of the semigroup CNZ™. Observe, that C(a,b)NN"*™ = L(a, b).
The existence of such a system of finite cardinality was already shown by Gordan
[G1873] for any rational cone. Van der Corput [Cor31] proved the uniqueness
for pointed rational cones.

The set H(a,b) of all minimal solutions of a linear Diophantine equation
has been studied for a long time in various contexts, see e.g., [Ehr79], [FT95],
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[Gre88] and the references within. The purpose of this note is to generalize
a result of Lambert [Lam87] and Diaconis, Graham& Sturmfels [DGS94] by
proving that the elements of H(a,b) satisfy a certain system of inequalities.
We assume throughout that a = (ai,...,a,)" € N*, b = (by,...,bn)" €
N n>m>1,and a1 <ag <--- < ay, by <by <--- < by,. It is not hard to
see that
C(a,b) = pos {bjei+aie"+j 11<i<n, 1<j<m},

where pos denotes the positive hull and e? € R™*™ denotes the -th unit vector.
A trivial system of valid inequalities for the elements of H(a, b) is given by the
facet defining hyperplanes of the zonotope

{(Sﬂ,y) € Rn+m : (Z,y)T = Zi,j Aij(bjei - aien+j)7 0 S >\ij S 1}7

because it is well known (and easy to see) that the Hilbert basis of a pointed
rational cone is contained in the zonotope spanned by the generators of the
cone. Stronger inequalities were given by Lambert ([Lam87]) and independently
by Diaconis, Graham&Sturmfels [DGS94]. They proved that every (z,y)T €
H(a,b) satisfies

in <by, and Zyj < ap. (13)
i—1 j=1

Here we show

Theorem 1. Every (z,y)T € H(a,b) satisfies the n + m inequalities

n -1 m
by —b; b; —b
[Jl]: E x¢+g \‘la ijj<bl+ E ’VJ l-‘yj, l=1,...,m,
i=1 J=1

" P B
m k—1 a a n a a
. . k— % Qi — %k | _
1 zy+z{ - Ja:zéa;ﬁ- Z[ = ] E=1....m,

i=k+1

where [x] (|z]) denotes the smallest integer not less than x (the largest integer
not greater than x).

Observe, that [J,,] and [I,] are generalizations of the inequalities stated in (1.3).

2 Proof of Theorem 1

In the following we denote by < (respectively by <) the usual partial order, i.e.,
for two vectors z,y we write x < y if for each coordinate holds x; < y; and we
write < y if, in addition, there exists a coordinate with z; < y;. The proof of
Theorem 1 relies on the following observation.

Lemma 1. Let (z,9)T € L(a,b) and let (z*,y")7T, (22,4*)T € N"*™ such that
0< (z2—2t,y2—y"HT < (,9)7 and a2 —bTy' = aT2? —bTy?. Then (z,79)"
is not an element of H(a,b).

Proof. Let (24, 2y) = (2? — 2',y? — y'). By assumption we have (z,, z,)7, (T —

2o, Y—2y) " € L(a,b)\{0}. Thus (Z,Y) = (T— 24,7 — 2y) + (24, 2,) can be written
as a non trivial combination of two elements of £(a,b)\{0}. O



Proof of Theorem 1. Let (#,%)T € H(a,b). By symmetry it suffices to con-
sider only the inequalities [J;], l = 1,...,m. Let us fix an index [ € {1,...,m}
and let & = Y0 | &, v = Z;nzl ;. We choose a sequence of points ! € N",
0 <1 <&, such that

0=a<al<a?< - <2t =13 (2.1)
Next we define recursively a sequence of points 3/ € N™, 0 < j < v, by y° =0
and 3/ = /1 4 ¢?0) | j > 1, where the index d(3) is given by d(j) = min{1 <

d<m: yé_l +e? < §jq}. Observe that here e? denotes the d-th unit vector in
R™. Obviously, we have

0=y’ <yl<y’<---<y’=4. (2.2)

T

For two points € N, y € N let r(z,y) = a’x — b7y and for a given point !

let () be the unique point such that
T(xi7y#(i)) = min {T(l‘i,yj) . r(xi,yj) >0,0<j< U} )

For abbreviation we set (i) = r(z?, y*(*). It is easy to see that r(i) € {0,...,
by, — 1} and

0= yhl0) < i) < < gu© _ g, (2.3)
Moreover, by definition of 47 we have the relation

(i) > by =y =g, 1< <t (2.4)
So we have assigned to each i € {0,...,&— 1} its residue 7(i) and now we count

the number of different residues which may occur. To this end let
Ri={ie{0,....,6—1}:r(i) < b},

and for [ +1 < j <mlet

R; = {z € {0, 6 =1 by < (i) < by, ') = gm0, yh D < yj}
Since {0,...,§ — 1} = Uj~, R; we have
S & <#Ri+ Y #R;. (2.5)
i=1 j=i+1
By Lemma 1, (2.1), (2.2) we have

#R; = #{r(z) 1€ Ry} <y (2.6)
We claim that for j =14+ 1,...,m

b; —b
#R; < [Jall—‘ Yj- (2.7)

To show this let ¢ € {0,...,9; — 1} and let z* < --- < 2’ be all vectors of the
z-sequence (cf. (2.1)) satisfying y;(l) = ( and i € R;. By construction we have

yh() = yuliz) — ... = yun) and so

(1= Day <a’a' —a’a"™ =r(i,) —r(i1) < (bj — 1) = by.



Hence 7 < [(b; — b;)/a1]| and we get (2.7).
So far we have proved (cf. (2.5), (2.7))

le<#Rl+ Z {

Jj=l+1

W . (2.8)

In the following we estimate the number of residues in {0,...,b — 1} which are
not contained in {r(i) : i € R;}.

To do this we have to extend our z-sequence. For v € N let p,,q, € N be
the uniquely determined numbers with v = p,& 4+ g, 0 < ¢, < &, and let

T = pq,mg + v,

Observe that r(Z%,y) = p,bT9§ — by +alx%. For s € {1,...,1—1} and t €
{0,...,79s— 1} let y** be the point of the y-sequence (cf. (2.2)) with coordinates

it =t Y=g, 1<j<s—1, and y'=0,5+1<j<m.
For such a vector y** let Z°(>*) be the point of the Z-sequence such that

r(@ 0yt = min {r(z*, y*") : r(@,y>") > b, i € {0,...,&}}.

Observe that such a point Z°(5) exists, because t € {0,...,9s — 1}. Moreover,
7005 belongs to the “original” z-sequence. In particular, we have

be < (2%, y>) < by + an. (2.9)
Let rs¢ = {T' : bs < r(T',y>!) < b;}. Obviously, by (2.9) we have
#rss > [(b —bs)/an]. (2.10)

Now we study the cardinality of

and we show

#Rzi Lblb Jy (2.11)

Suppose the contrary. Then, by (2.10), we can find s,s" € {1,...,1 -1}, t €
{0,...,9s—1}, ¢ €{0,...,9s—1} and vectors T, T of the T-sequence such that
r(@,y*) = r(@¥,y*"). We may assume y*¢ < y* ' and therefore ¥ < ¥,
i.e., v < w. Since

t/

r(@,y™") = pob”§ — b7y + a2 = p, b7y — b7y 4 Tt = r(@,y" ")

we get pw € {pv,po + 1}

a) If py, = p, then 0 < T — 7% = 2% — 2% < ¢ and we can apply Lemma 1
to (¥, y>H)T, (¥, y* )T which yields the contradiction (&,7) ¢ H(a,b).

b) If py = py + 1 then 0 < ¥ — 7% = ¢ + 29 — 2% Since

aT(va _ wa) — ng + bTys,t _ bTys/,t/ >0



we have 29 < 2% and thus 0 < ¥ — Z¥ < 2¢. Hence, also in this case we can
apply Lemma 1 and obtain a contradiction.

Next we claim that

Rn{r(i):ie R} =0. (2.12)

Otherwise there exist Z¥, y*! with by < 7(Z%,y>!) < by and Z°, y*(), 0 < i <
¢ — 1, such that r(z°,y*t) = (T, y*@). Since r(z,y>*!) > bs but y>! < g, we
have y*! # y*(® (cf. (2.4)). Hence, we may assume 3>t < y#(0) or y#(1) < y5t,
a) If ! < y*) then ¥ < T and thus v < i < £&. Again, by Lemma 1 we find
(.9) ¢ H@b).
b) If () < 4>t then T < . As above, it is easy to see that p, € {0,1} and
that in both cases Lemma 1 can be applied in order to get a contradiction.

Finally, we note that (2.6), (2.12) and (2.11) imply

-1 b —b
#Rlsm—zya Jy

s=1 n

which proves inequality [J;] (cf. (2.8)). O

3 Remarks

Theorem 1 shows that the minimal solutions of a linear Diophantine equation
ly in the region that one obtains from intersecting the zonotope associated with
the generators of C(a,b) with all the halfspaces induced by the inequalities [I],
k=1,...,nand [J]], l = 1,...,m. We believe that a stronger statement is
true: every element of H(a,b) is a convex combination of 0 and the generators
bje' + a;e" ™ of C(a,b). More formally, let

P(a,b) = conv {O,bjei +ae"i1<i<n, 1<j< m}.
We conjecture that
Conjecture 1. H(a,b) C P(a,b).!

We remark that there is an example by Hosten and Sturmfels showing that
if one replaces P(a,b) by the “smaller” polytope P(a,b) = conv {0, (bje’ +
ae™7)/ged(by,a;) 1 1 <i<n,1<j<m}, then H(a,b) ¢ P(a,b).

For m = 1 Theorem 1 implies the inclusion H(a,b) C P(a,b). This can
easily be read off from the representation

P(a,b) = {(x,y)T eR"xR: alz=by, z,y>0, in Sbl}.

i=1

It is not difficult to check that the inequalities [I;] and [J;] of Theorem 1
“without rounding” define facets of P(a,b).

Proposition 1. Forl=1,...,m let

n -1 m
n m by — b; b; — b
J =< (z,y) e R" xR :E xi—i—g , Ly; <b + g ]a Y;
. - n . 1
i=1 Jj=1 Jj=Il+1

IThis conjecture was independently made by Hosten and Sturmfels, private communica-
tion.



and fork=1,...,n let

m k—1
n m ., ) ag
Iy, = ¢ (z,y) e R" xR™: ]Eil y; + igl 2

—a; ~ a; —a

. l’iSak+_Z by x;
1=k-+1

Then we have P(a,b) C J;, P(a,b) C Iy. Moreover, P(a,b)NJ; and P(a,b) N1}

are facets of P(a,b), 1 <1<m,1<k<n.

Proof. 1t is quite easy to check that all vectors bjei +ae"t 1<i<n, 1<j<
m, are contained in J;, Il = 1,...,m. Moreover, the inequality corresponding
to J; is satisfied with equality by the n + m — 1 linearly independent points
blel+ae"t 1 <i<mn, bje"+ae", 1< j<I-1,bjet+are"™,I+1<j<m.
The halfspaces Ij; can be treated in the same way. O

Elementary considerations show that for m = 2 the polytope P(a,b) can be
written as P(a,b) = {(x,y)T € R" xR?: aTx =bTy; 2,9y >0, (z,y)T € I, 1 <
k < n}, and thus Theorem 1 and Proposition 1 imply that the conjecture is
“almost true” when m = 2 (or respectively, for n = 2).
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