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Abstract

This paper investigates the region in which all the minimal solutions of
a linear diophantine equation ly. We present best possible inequalities
which must be satisfied by these solutions and thereby improve earlier
results.
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1 Introduction

For two nonnegative integral vectors a ∈ Nn, b ∈ Nm, n, m ≥ 1, let

L(a, b) = {(x, y) ∈ Nn × Nm : aᵀx = bᵀy} (1.1)

be the set of all nonnegative solutions of the linear Diophantine equation aᵀx =
bᵀy. Here we are interested in the minimal solutions of this linear Diophantine
equation, where (x, y) ∈ L(a, b) is called minimal if it can not be written as the
sum of two other elements of L(a, b)\{0}. The set of all minimal solutions is
denoted by H(a, b). By definition we have

L(a, b) =
{∑p

i=1
qih

i : qi, p ∈ N, hi ∈ H(a, b)
}

and H(a, b) is a minimal subset of L(a, b) having this generating property.
In other words, H(a, b) is the Hilbert basis of the pointed rational cone

C(a, b) = {(x, y) ∈ Rn
≥0 × Rm

≥0 : aᵀx = bᵀy}. (1.2)

A Hilbert basis of an arbitrary pointed rational polyhedral cone C ⊂ Rn

is defined as the unique minimal generating system (w.r.t. nonnegative integral
combinations) of the semigroup C∩Zn. Observe, that C(a, b)∩Nn×m = L(a, b).
The existence of such a system of finite cardinality was already shown by Gordan
[G1873] for any rational cone. Van der Corput [Cor31] proved the uniqueness
for pointed rational cones.

The set H(a, b) of all minimal solutions of a linear Diophantine equation
has been studied for a long time in various contexts, see e.g., [Ehr79], [FT95],
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[Gre88] and the references within. The purpose of this note is to generalize
a result of Lambert [Lam87] and Diaconis, Graham& Sturmfels [DGS94] by
proving that the elements of H(a, b) satisfy a certain system of inequalities.

We assume throughout that a = (a1, . . . , an)T ∈ Nn, b = (b1, . . . , bm)T ∈
Nm, n ≥ m ≥ 1, and a1 ≤ a2 ≤ · · · ≤ an, b1 ≤ b2 ≤ · · · ≤ bm. It is not hard to
see that

C(a, b) = pos
{
bje

i + aie
n+j : 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
,

where pos denotes the positive hull and ei ∈ Rn+m denotes the i-th unit vector.
A trivial system of valid inequalities for the elements of H(a, b) is given by the
facet defining hyperplanes of the zonotope{

(x, y) ∈ Rn+m : (x, y)ᵀ =
∑

i,j
λij(bje

i − aie
n+j), 0 ≤ λij ≤ 1

}
,

because it is well known (and easy to see) that the Hilbert basis of a pointed
rational cone is contained in the zonotope spanned by the generators of the
cone. Stronger inequalities were given by Lambert ([Lam87]) and independently
by Diaconis, Graham&Sturmfels [DGS94]. They proved that every (x, y)ᵀ ∈
H(a, b) satisfies

n∑
i=1

xi ≤ bm and
m∑

j=1

yj ≤ an. (1.3)

Here we show

Theorem 1. Every (x, y)ᵀ ∈ H(a, b) satisfies the n + m inequalities

[Jl] :
n∑

i=1

xi +
l−1∑
j=1

⌊
bl − bj

an

⌋
yj ≤ bl +

m∑
j=l+1

⌈
bj − bl

a1

⌉
yj , l = 1, . . . ,m,

[Ik] :
m∑

j=1

yj +
k−1∑
i=1

⌊
ak − ai

bm

⌋
xi ≤ ak +

n∑
i=k+1

⌈
ai − ak

b1

⌉
xi, k = 1, . . . , n,

where dxe (bxc) denotes the smallest integer not less than x (the largest integer
not greater than x).

Observe, that [Jm] and [In] are generalizations of the inequalities stated in (1.3).

2 Proof of Theorem 1

In the following we denote by ≤ (respectively by <) the usual partial order, i.e.,
for two vectors x, y we write x ≤ y if for each coordinate holds xi ≤ yi and we
write x < y if, in addition, there exists a coordinate with xj < yj . The proof of
Theorem 1 relies on the following observation.

Lemma 1. Let (x̂, ŷ)T ∈ L(a, b) and let (x1, y1)T , (x2, y2)T ∈ Nn+m such that
0 < (x2−x1, y2−y1)T < (x̂, ŷ)T and aT x1− bT y1 = aT x2− bT y2. Then (x̂, ŷ)T

is not an element of H(a, b).

Proof. Let (zx, zy) = (x2 − x1, y2 − y1). By assumption we have (zx, zy)T , (x̂−
zx, ŷ−zy)T ∈ L(a, b)\{0}. Thus (x̂, ŷ) = (x̂−zx, ŷ−zy)+(zx, zy) can be written
as a non trivial combination of two elements of L(a, b)\{0}.
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Proof of Theorem 1. Let (x̃, ỹ)T ∈ H(a, b). By symmetry it suffices to con-
sider only the inequalities [Jl], l = 1, . . . ,m. Let us fix an index l ∈ {1, . . . ,m}
and let ξ =

∑n
i=1 x̃i, υ =

∑m
j=1 ỹj . We choose a sequence of points xi ∈ Nn,

0 ≤ i ≤ ξ, such that

0 = x0 < x1 < x2 < · · · < xξ = x̃. (2.1)

Next we define recursively a sequence of points yj ∈ Nm, 0 ≤ j ≤ υ, by y0 = 0
and yj = yj−1 + ed(j), j ≥ 1, where the index d(j) is given by d(j) = min{1 ≤
d ≤ m : yj−1

d + ed ≤ ỹd}. Observe that here ed denotes the d-th unit vector in
Rm. Obviously, we have

0 = y0 < y1 < y2 < · · · < yυ = ỹ. (2.2)

For two points x ∈ Nn, y ∈ Nm let r(x, y) = aT x− bT y and for a given point xi

let yµ(i) be the unique point such that

r(xi, yµ(i)) = min
{
r(xi, yj) : r(xi, yj) ≥ 0, 0 ≤ j ≤ υ

}
.

For abbreviation we set r(i) = r(xi, yµ(i)). It is easy to see that r(i) ∈ {0, . . . ,
bm − 1} and

0 = yµ(0) ≤ yµ(1) ≤ · · · ≤ yµ(ξ) = ỹ. (2.3)

Moreover, by definition of yj we have the relation

r(i) ≥ bt =⇒ y
µ(i)
j = ỹj , 1 ≤ j ≤ t. (2.4)

So we have assigned to each i ∈ {0, . . . , ξ− 1} its residue r(i) and now we count
the number of different residues which may occur. To this end let

Rl = {i ∈ {0, . . . , ξ − 1} : r(i) < bl} ,

and for l + 1 ≤ j ≤ m let

Rj =
{

i ∈ {0, . . . , ξ − 1} : bl ≤ r(i) < bj , y
µ(i)
j−1 = ỹj−1, y

µ(i)
j < ỹj

}
.

Since {0, . . . , ξ − 1} =
⋃m

j=l Rj we have

n∑
i=1

x̃i ≤ #Rl +
m∑

j=l+1

#Rj . (2.5)

By Lemma 1, (2.1), (2.2) we have

#Rl = #{r(i) : i ∈ Rl} ≤ bl. (2.6)

We claim that for j = l + 1, . . . ,m

#Rj ≤
⌈

bj − bl

a1

⌉
ỹj . (2.7)

To show this let ζ ∈ {0, . . . , ỹj − 1} and let xi1 < · · · < xiτ be all vectors of the
x-sequence (cf. (2.1)) satisfying y

µ(i)
j = ζ and i ∈ Rj . By construction we have

yµ(i1) = yµ(i2) = · · · = yµ(iτ ) and so

(τ − 1)a1 ≤ aT xiτ − aT xi1 = r(iτ )− r(i1) ≤ (bj − 1)− bl.
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Hence τ ≤ d(bj − bl)/a1e and we get (2.7).
So far we have proved (cf. (2.5), (2.7))

n∑
i=1

x̃i ≤ #Rl +
m∑

j=l+1

⌈
bj − bl

a1

⌉
ỹj . (2.8)

In the following we estimate the number of residues in {0, . . . , bl − 1} which are
not contained in {r(i) : i ∈ Rl}.

To do this we have to extend our x-sequence. For v ∈ N let pv, qv ∈ N be
the uniquely determined numbers with v = pvξ + qv, 0 ≤ qv < ξ, and let

xv = pvxξ + xqv .

Observe that r(xv, y) = pvbT ỹ − bT y + aT xqv . For s ∈ {1, . . . , l − 1} and t ∈
{0, . . . , ỹs−1} let ys,t be the point of the y-sequence (cf. (2.2)) with coordinates

ys,t
s = t, ys,t

j = ỹj , 1 ≤ j ≤ s− 1, and ys,t
j = 0, s + 1 ≤ j ≤ m.

For such a vector ys,t let xδ(s,t) be the point of the x-sequence such that

r(xδ(s,t), ys,t) = min
{
r(xi, ys,t) : r(xi, ys,t) ≥ bs, i ∈ {0, . . . , ξ}

}
.

Observe that such a point xδ(s,t) exists, because t ∈ {0, . . . , ỹs − 1}. Moreover,
xδ(s,t) belongs to the “original” x-sequence. In particular, we have

bs ≤ r(xδ(s,t), ys,t) < bs + an. (2.9)

Let rs,t = {xi : bs ≤ r(xi, ys,t) < bl}. Obviously, by (2.9) we have

#rs,t ≥ b(bl − bs)/anc. (2.10)

Now we study the cardinality of

R =
l−1⋃
s=1

{
ỹs−1⋃
t=0

{
r(xi, ys,t) : bs ≤ r(xi, ys,t) < bl

}}
and we show

#R ≥
l−1∑
s=1

⌊
bl − bs

an

⌋
ỹs. (2.11)

Suppose the contrary. Then, by (2.10), we can find s, s′ ∈ {1, . . . , l − 1}, t ∈
{0, . . . , ỹs−1}, t′ ∈ {0, . . . , ỹs′−1} and vectors xv, xw of the x-sequence such that
r(xv, ys,t) = r(xw, ys′,t′). We may assume ys,t < ys′,t′ and therefore xv < xw,
i.e., v ≤ w. Since

r(xv, ys,t) = pvbT ỹ − bT ys,t + aT xqv = pwbT ỹ − bT ys′,t′ + aT xqw = r(xw, ys′,t′)

we get pw ∈ {pv, pv + 1}.
a) If pw = pv then 0 < xw − xv = xqw − xqv < xξ and we can apply Lemma 1
to (xv, ys,t)T , (xw, ys′,t′)T which yields the contradiction (x̃, ỹ) /∈ H(a, b).
b) If pw = pv + 1 then 0 < xw − xv = xξ + xqw − xqv . Since

aT (xqv − xqw) = bT ỹ + bT ys,t − bT ys′,t′ > 0
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we have xqw < xqv and thus 0 < xw − xv < xξ. Hence, also in this case we can
apply Lemma 1 and obtain a contradiction.

Next we claim that
R ∩ {r(i) : i ∈ Rl} = ∅. (2.12)

Otherwise there exist xv, ys,t with bs ≤ r(xv, ys,t) < bl and xi, yµ(i), 0 ≤ i ≤
ξ − 1, such that r(xv, ys,t) = r(xi, yµ(i)). Since r(xv, ys,t) ≥ bs but ys,t

s < ỹs we
have ys,t 6= yµ(i) (cf. (2.4)). Hence, we may assume ys,t < yµ(i) or yµ(i) < ys,t.
a) If ys,t < yµ(i) then xv < xi and thus v < i < ξ. Again, by Lemma 1 we find
(x̃, ỹ) /∈ H(a, b).
b) If yµ(i) < ys,t then xi < xv. As above, it is easy to see that pv ∈ {0, 1} and
that in both cases Lemma 1 can be applied in order to get a contradiction.

Finally, we note that (2.6), (2.12) and (2.11) imply

#Rl ≤ bl −
l−1∑
s=1

⌊
bl − bs

an

⌋
ỹs,

which proves inequality [Jl] (cf. (2.8)).

3 Remarks

Theorem 1 shows that the minimal solutions of a linear Diophantine equation
ly in the region that one obtains from intersecting the zonotope associated with
the generators of C(a, b) with all the halfspaces induced by the inequalities [Ik],
k = 1, . . . , n and [Jl], l = 1, . . . ,m. We believe that a stronger statement is
true: every element of H(a, b) is a convex combination of 0 and the generators
bje

i + aie
n+j of C(a, b). More formally, let

P (a, b) = conv
{
0, bje

i + aie
n+j : 1 ≤ i ≤ n, 1 ≤ j ≤ m

}
.

We conjecture that

Conjecture 1. H(a, b) ⊂ P (a, b).1

We remark that there is an example by Hosten and Sturmfels showing that
if one replaces P (a, b) by the “smaller” polytope P̃ (a, b) = conv {0, (bje

i +
aie

n+j)/ gcd(bj , ai) : 1 ≤ i ≤ n, 1 ≤ j ≤ m}, then H(a, b) 6⊂ P̃ (a, b).
For m = 1 Theorem 1 implies the inclusion H(a, b) ⊂ P (a, b). This can

easily be read off from the representation

P (a, b) =

{
(x, y)T ∈ Rn × R : aT x = b1y, x, y ≥ 0,

n∑
i=1

xi ≤ b1

}
.

It is not difficult to check that the inequalities [Ik] and [Jl] of Theorem 1
“without rounding” define facets of P (a, b).

Proposition 1. For l = 1, . . . ,m let

Jl =

(x, y) ∈ Rn × Rm :
n∑

i=1

xi +
l−1∑
j=1

bl − bj

an
yj ≤ bl +

m∑
j=l+1

bj − bl

a1
yj


1This conjecture was independently made by Hosten and Sturmfels, private communica-

tion.
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and for k = 1, . . . , n let

Ik =

(x, y) ∈ Rn × Rm :
m∑

j=1

yj +
k−1∑
i=1

ak − ai

bm
xi ≤ ak +

n∑
i=k+1

ai − ak

b1
xi

 .

Then we have P (a, b) ⊂ Jl, P (a, b) ⊂ Ik. Moreover, P (a, b)∩Jl and P (a, b)∩ Ik

are facets of P (a, b), 1 ≤ l ≤ m, 1 ≤ k ≤ n.

Proof. It is quite easy to check that all vectors bje
i +aie

n+j , 1 ≤ i ≤ n, 1 ≤ j ≤
m, are contained in Jl, l = 1, . . . ,m. Moreover, the inequality corresponding
to Jl is satisfied with equality by the n + m − 1 linearly independent points
blei+aie

n+l, 1 ≤ i ≤ n, bje
n+anen+j , 1 ≤ j ≤ l−1, bje

1+a1e
n+j , l+1 ≤ j ≤ m.

The halfspaces Ik can be treated in the same way.

Elementary considerations show that for m = 2 the polytope P (a, b) can be
written as P (a, b) = {(x, y)T ∈ Rn ×R2 : aT x = bT y;x, y ≥ 0, (x, y)T ∈ Ik, 1 ≤
k ≤ n}, and thus Theorem 1 and Proposition 1 imply that the conjecture is
“almost true” when m = 2 (or respectively, for n = 2).
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